
The Role of Utility Engineers on Large Transportation Projects

Presenter/Author Information

Tom Greaves, P.Eng.
Senior Project Manager Hatch
tom.greaves@hatch.com

Andy Walsh, P.Eng., PMP
Project Engineer Hatch
andy.walsh@hatch.com

Six Pillars of Utility Engineering (plus 1)

UTILITY PROCESS

MANAGEMENT

UTILITY CONFLICT MANAGEMENT

UTILITY INVESTIGATIONS

UTILITY DESIGN

UTILITY
CONSTRUCTION
MANAGEMENT

UTILITY ASSET MANAGEMENT

UTILITY COORDINATION

Utility Conflict Matrix (UCM)

Why you do it:

- Identity existing utilities, start the conversation
- Utility density "smell test"
- Identify utility companies
- Identify conflicts 2-D
- Identify Early Works
- Identify betterments (if you build it, they will come)
- Identify land requirements
- Develop high level relocation cost estimate
- Provide information into project schedule
- Educate the coordination team
- Give a heads up of potential legal issues

Features:

- Filterable:
 - TPU inventory, list of all their assets
- Not seen as user-friendly
- Read in conjunction with composite utility drawings

TPU Meetings

Early

• Prior to 30%

Often

 Monthly, biweekly, weekly (by Contractor)

Minuted

- Attendees
- Conflicts
- Action Items

TPU Meetings (TPU Comments/ Powner's Comments)

What's impacted?

Who's going to pay for relocations?

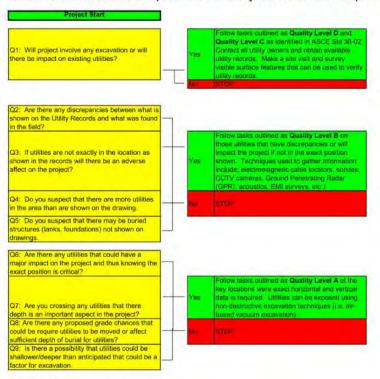
When do you need a design?

When will we know more?

Who can speak truth to power?

When will you get a design team together?

What are the shut down periods, schedule constraints?


- Can you share design manual- Relocation costs

SUE Investigations

Subsurface Utility Engineering Investigations

Questions that should be asked to help determine what Quality Level of Information is required.

Additional Questions to Consider

What is the overall dollar value of project? - Balancing cost for investigation vs. overall cost of project.

What is the overall importance of project? - How will running into utility problems which increase costs, and delay project completion be perceived.

What is the potential safety risks involved with the project? - What type of utilities are present?

	Baseline Quality Levels				
	Utilities	QL-D	QL-C	QL-B	QL-A
Pipelines (crude, HVP)		R	0	0	0
	Water transmission	R		0	
Water	Water distribution	R			
	Services	R			
	Sewer Trunks/ Forcemains	R	0	0	
Sewer	San Sewer collection	R	0		
	Laterals	R	0		
C	Mainline	R	0	0	
Gas	Service Laterals	R			
	Mainline (OH)	R		0	
Telcom	Mainline (UG)	-		-	
	Service Laterals (OH)	R	-		
	Mainline (OH)	R		0	
	Mainline (UG)	-		12	
Electrical	Services Laterals (OH)	R		0	
	Service Laterals (UG)	R			

Ī	SLS Quality Levels					
	(recommended)					
	QL-D	QL-C	QL-B	QL-A		
	NA	NA	NA	NA		
	D	D	R			
	D	D	1.			
	ND	R				
	D	D	R			
	D	D	1-1			
1	ND	R				
	D	D	R			
	ND	R				
	D	D	D			
	ND	R				
	D	D				
	D	D	D			
	ND	R				
	D					
	ND	R				

Early Works

Known conflict

Need to relocate

Low risk of future conflict

No additional lands needed

Long Lead Time

Regulatory Window

Geotechnical Favourable

Data QL: need SUE program?

Minimum impact to existing operations

Treatment proscribed

Utility Coordination Engineer (OE)

Utility Expertise

Design

- Large linear projects
- Utility design standards
- Space Proofing (right of ways, clearances, utility corridors)

Operations

- Maintenance
- Access

Legal Knowledge

- TPU agreements
- Contract Law

Construction Experience

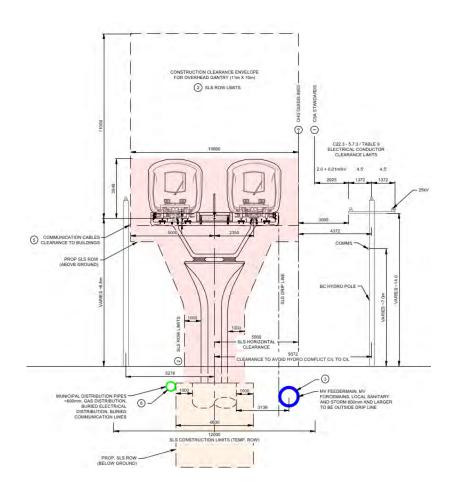
Installation Knowledge

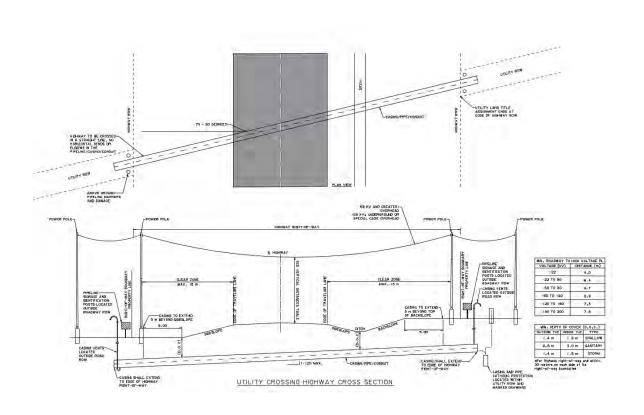
- Footprint
- Timing (for permits, for construction)
- Cost estimates

Management/Leadership Skills

Lead a team and liaison with:

- TPUs
- Other engineering disciplines





Clearance Sketches: Clear Zones

Other Tasks

Project Agreement SME

- Author / Gap analysis
- Interpreter

Right of Way SME

- "keeper of the corridor"
- Look for and encourage good right of way management
- Future proofing
- Build utility corridors
- Enforce owner's crossing requirements

Meetings, Minutes, and Memos

- Attend TPU, Local Authority Meetings
- Take Minutes (critical)
- Author and/or provide other SMEs to answer client's pressing questions

Technical Support

- KMZ files
- Roll plans

Utility Expertise

Electrical Power supply and distribution

Transmission
Assets
Distribution
Assets

Natural Gas Supply

Transmission
Assets
Distribution
Assets

Crude Oil/ NGL Pipelines

Products:

 Liquid (crude oil, HVP), H2S

Asset types:

 Sending/receiving traps, tankage, pump stations Communication Systems

Fiber Optics
Cable
Cell Towers

Municipalities

Storm:

Pipes and ponds

Sanitary:

• Trunks, local

Water:

 Feedermains, local distribution

Erosion and sediment control

Current Risks: "hearing the guns in the distance"

Local Authority Tire Kicking

Set reasonable deadlines for betterments in the corridor Contractor requests variance from relocation solution

- Review request from POV of published manuals and constructability

TPU's slow with designs

Bi-weekly meetings (minuted)

TPU Assets in Poor Shape

Boots on the ground suggest some utilities in poor shape

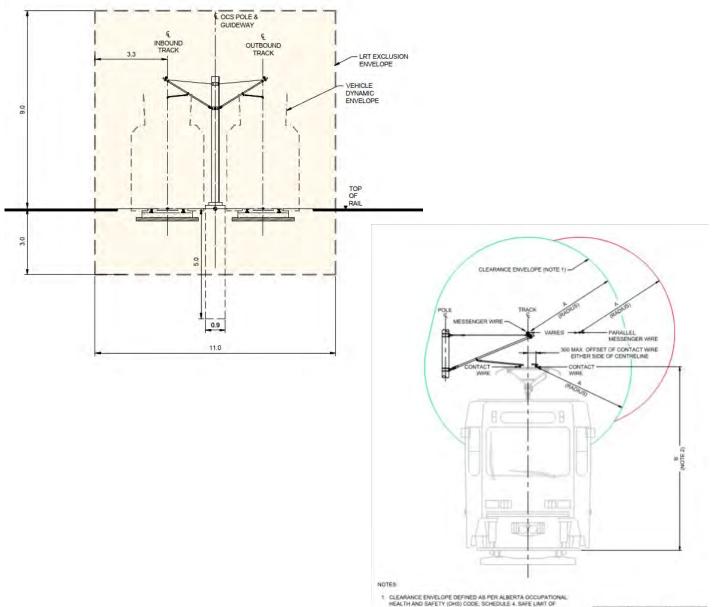
Case Study: Green Line Utility Conflicts Resolution Program- South Segment City of Calgary

As part of the Green Line Enabling Works, the City initiated a utility conflicts resolution program.

 Abandon, relocate, protect in place, leave for main contract.

What were the challenges?

What went well?



Exclusion Envelope

Challenges:

- Unknown design vehicle.
- Extents of at-grade, trench, tunnel and elevated segments was a reference concept.
- Potential rework by future contractor.

- MINIMUM VERTICAL DESIGN CLEARANCES AS PER CANADIAN ELECTRICAL CODE C22 3 No. 1-15, TABLE 4.

3.	ALL MEASUREMENTS ARE IN MILLIMETRES UNLESS OTHERWISE
	SPECIFIED.

DIMENSION	750VDC	1500VDC
A	1000mm	3000mm
В	4600mm	4600mm

Standardized Design

Utility Crossings:

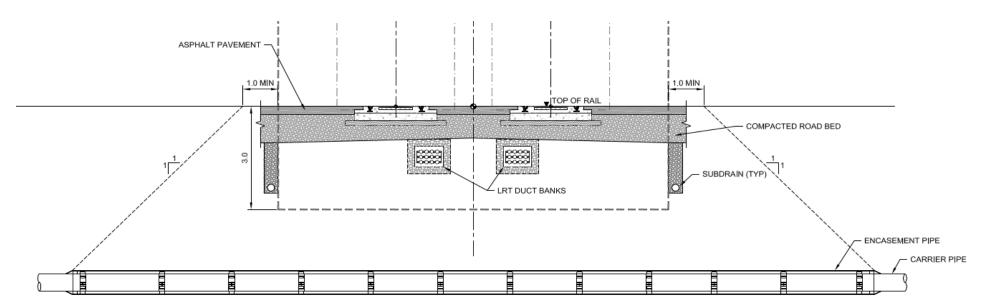
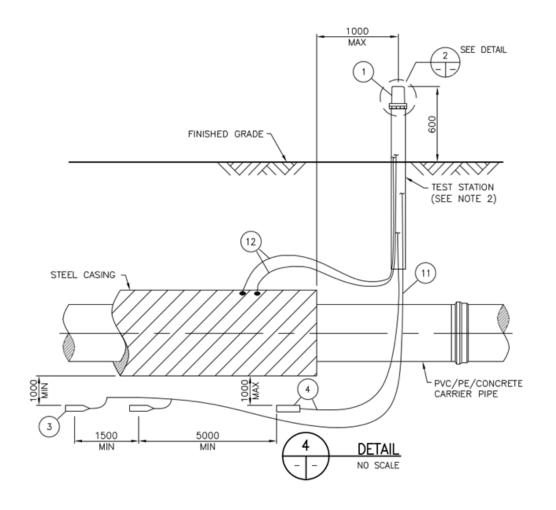

• Standardized carrier pipe and encasement pipe requirements for crossings.

TABLE 2 - PREFERRED CARRIER AND ENCASEMENT PIPE FOR LRT CROSSINGS

Carrier				Encasement			
FM ¹	WM ²	Sewer	Existing	Replacement	Steel	Concrete	None
Х			CPP ³	CPP³/Steel	Y	N	N
X			Steel	Steel	Υ	N	N
X	Х		PVC/PE	PVC/PE	Υ	N	N
	Х		DI/CI	PVC	Y	N	N
		Х	Concrete < 900mm	PVC/PE	Υ	Υ4	N
		X	Concrete > 900mm	Concrete	N	N	Y
		Х	PVC/PE	PVC	Y	Υ4	N

Notes: 1-Feedermains

- 2 Watermains or forcemains
 - 3 Concrete Pressure Pipe
 - 4 Steel encasement preferred



Standardized Design

Cathodic Protection:

 Basic cathodic protection that can be upgraded (if necessary) during the main contract following thorough analysis of stray currents, soil corrosivity and soil conductivity.

Contracting Strategies

Third Party Utilities – Self Perform

Municipal Utilities (Sanitary, Water, Storm)

RFSO

- 3 contractors prequalified under master agreement
- Statement of Requirements

City Self-perform

Water Resources Construction Group

RFT

 Utility Relocation Works completed in conjunction with other Enabling Works scope (i.e. roadworks modifications, landfill removal, CN Highfield Tunnel).

Third Party Utility Coordination – Technical Working Groups: being well papered Alberta Utilities Commission

- - Review of facility applications process has many steps and can take up to a year depending on the complexity of the application.
 - Public consultations
 - AUC Rule 007
 - Applications for Power Plants, Substations, Transmission Lines, Industrial System Designations, Hydro Developments and Gas Utility Pipelines
- MCAA and Bylaw Agreements
 - Can be problematic when applied to mega projects.
 - Vendor's annual budgets / resourcing.
- Schedules / process Regulatory Requirements.
- Joint Use
- URWs and UI As
- CROWM: allows utility providers to issue information (JUMP)
- Capital Works Coordination Committee: knock on impacts of other projects (City of Calgary)

BYLAW NUMBER 17M2016

BEING A BYLAW OF THE CITY OF CALGARY TO REGULATE THE PROCESS FOR ACCESS AND USE OF MUNICIPAL RIGHTS-OF-WAY

+ Thank you.

Questions?

